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We present a general replica calculation for learning from examples generated by a nonuniform pat-
tern distribution with a single symmetry-breaking orientation. Our results cover the three main learning
scenarios: storage of patterns with random classifications by a perceptron, supervised learning from a
teacher, and unsupervised learning. We show that for a perceptron the critical storage capacity a, =2 is
completely independent of the pattern distribution provided it is point symmetric or provided the
classification as *1 is unbiased. In a particular model for supervised learning we find that an ideal
(Bayes) student learns most from a few examples if they are easy and from a large number if they are
difficult. Learning based on the minimization of a specific class of (quadratic) cost functions is solved

completely for all three scenarios.

PACS number(s): 87.10.+e, 05.20.—y, 02.50.—r

I. INTRODUCTION

Over the last few years, several simple models describ-
ing the process of “learning from examples” have been
analyzed using powerful techniques borrowed from the
statistical mechanics of spin glasses [1]. One distin-
guishes the storage problem [2], in which one searches for
a perceptron that reproduces the correct classification for
these patterns, supervised learning [3], where a “teacher”
provides the classification for these patterns, and unsu-
pervised learning [4,5], where one tries to discover the
characteristics of the underlying nonuniform distribution
that generates the patterns. The purpose of this paper is
to present a general replica calculation which, within the
validity of replica symmetry, covers all three situations
and which includes most learning algorithms of interest
such as Bayes, Gibbs, maximal a posteriori probability,
and the minimization of ad hoc cost functions. Our only
restriction is that we consider the case of a single
symmetry-breaking orientation B along which the pat-
tern distribution is nonuniform and which at the same
time plays the role of the teacher in the case of supervised
learning.

In Sec. II the general framework of unsupervised learn-
ing considered here is introduced. It is shown how both
supervised learning and the capacity problem with
nonuniformly distributed examples can be transformed
into an unsupervised problem. In Sec. III we demon-
strate that all quantities of interest in the different learn-
ing scenarios can be reduced to the study of a single par-
tition function. Our central result for the associated free
energy based on a standard replica calculation follows
from Eq. (13) below under the assumption of replica sym-
metry. The corresponding local stability condition is
given in (18) and turns out to be (at least marginally)
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fulfilled for all examples studied in Secs. IV-VI. Various
expressions for the free energy and the stability condition
derived previously in the literature are recovered as spe-
cial cases.

As a first application of the general framework we in-
vestigate in Sec. IV the capacity problem for an arbitrary
nonuniform distribution of the patterns. We prove that
the maximal storage capacity a, =2 is independent of the
details of this distribution provided it is invariant under
B+—>—B or provided that the classification of the pat-
terns as *1 is unbiased. Moreover, we show that a, >2
in all other generic cases. As a further application we
study in Sec. V a particular model of supervised learning
of a teacher perceptron with a Gaussian nonuniform dis-
tribution of the examples. We find that in the best possi-
ble case, where the student follows the Bayes learning
rule, the generalization ability from a few examples is op-
timal if most of them are easy (far from the decision plane
of the teacher). On the other hand, if a lot of examples
are taught to the student, then it is favorable to choose
difficult ones. Analogous results have been found in Ref.
[6] for a related supervised problem (which also fits into
our general framework).

In Sec. VI we present a solution for all three learning
scenarios with arbitrary pattern distributions if the learn-
ing strategy is based on the minimization of a cost func-
tion with a quadratic ad hoc potential, including maximal
variance, Hebb, and adaline learning rules as special
cases. In the final Sec. VII, implications of our findings,
in particular with respect to the phenomenon of “retard-
ed classification” [5], are discussed and their relation is
pointed out to results that will be presented in detail else-
where.

II. LEARNING FROM EXAMPLES

We first formulate the general setup for unsupervised
learning considered in this paper. We assume that a set
of patterns {£*}P:={£',E%, ..., &P} is generated by p in-
dependent samplings from a nonuniform probability dis-
tribution P*(£|B), where B represents a symmetry-
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breaking orientation. Under the further assumption of
cylindrical symmetry around the B axis, one can always
write this so-called a priori probability in the following
form:

P*(&£|B)xexp{—V*(L)}8(E2—N) , 1

where A:=§&-B /V'N is the overlap, N stands for the di-
mension of the space, and the proportionality <« ac-
counts for a missing normalization constant on the right-
hand side (RHS). Both patterns £ and other N-
dimensional vectors such as B are henceforth supposed to
be normalized according to £2=B2=N.

The corresponding distribution P*(A) of the overlaps A
is easily found to be

P*(\)= [8(A—§-B/VN P*(£|B)dE

«exp{ —A%/2—V*(A)} )

(here and in the following integration limits t o are
dropped). In particular, for a uniform distribution of pat-
terns on the sphere one has that ¥*(A)=0 and hence A is
a normal random variable. In this case, there is no pref-
erential direction and the choice of B is irrelevant. Note
that the cosine of the angle between £ and B is given by
A/V'N and the patterns £ are thus concentrated for large
N in a very small belt about the “equator” plane perpen-
dicular to B. Therefore we will sometimes call A a “mi-
croscopic” overlap. The distribution of these overlaps (2)
will play a central role in our subsequent calculations.

The general task in unsupervised learning is to infer a
structure or rule from the available examples {£*}” [4,5].
This is only possible on the basis of additional a priori
knowledge, so that one can make a reasonable guess
about the structure or rule to be inferred with not too
many free parameters to be fitted. In our case, we will
take for granted that the rule behind the examples is of
the general form (1) and our task is to make a guess J
about the unknown symmetry-breaking orientation B.

If the form of the a priori probability (1) that generates
the patterns is known exactly (but not the vector B), one
can obtain the so-called a posteriori probability that the
unknown B coincides with a particular hypothesis vector
J by using the familiar Bayes rule. This rule exploits the
fact that the joint a priori probability P(J,{&*}?)
is proportional to both P(J|{£*}P)P({£*}?) and
P*({£*}P|J)P(J) with the uniform a priori probabilities
P({g")P) =< [15-,8((§*—N) and P(J)x8(J*—N).

One thus finds
p
P(Jl{g‘“}")‘xexp{ >V k")JS(JZ-—N) (3)
p=1
for this so-called a posteriori probability, where

At =g*J/V'N.

Several options to select a particular J vector on the
basis of this result are now open. First, one can sample at
random a vector J; from the probability distribution
given in Eq. (3). This scenario will be called Gibbs or
Boltzmann learning. Second, one can take the center of
mass of the J vectors (with a properly normalized length)
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Jp= [dIJPUJ|(E"}P) , @

corresponding to Bayes or optimal learning [5]. Finally,
one can sample a J vector J,, from the set that maxim-
izes the probability given in Eq. (3), known as maximum
a posteriori probability or maximal likelihood learning.

By exploiting results from Ref. [5] it is shown in Ap-
pendix A that the Bayes vector Jz makes the smallest an-
gle with the unknown B among all hypotheses J that can
be inferred from a given set of examples {£*}”. Further-
more, there exists a simple relation between the cosine of
this angle Rz(a)=Jz B /N and the one following from
Gibbs learning Rg(a)=Js B /N:

gla)=V Rgla) . (5)

These results are valid in the limit N— o with
a:=p /N 20 fixed, under some weak conditions specified
in Appendix A. In particular, the relation Rgz(a)= R (a)
applies to any neural network of any architecture for
which the overlap R (a) between the hypothesis J and B
is self-averaging.

In some cases, the a priori potential ¥*(A) in (1) is only
roughly known, so that the distribution (3) cannot be con-
structed. A simple and often used procedure is then to
choose the properly normalized J vector that minimizes a
cost function E of the following form:

p
E(J)=3 V(M) (6)
u=1
with A¥:=£#.J /V'N. The potential V(1) is chosen in an
ad hoc fashion, in the hope that it captures some of the
structure of the true pattern distribution [4]. Note that
the J vector which minimizes the ad hoc cost function (6)
can also be obtained as the vector that maximizes the
probability distribution (3), provided one chooses
V*(A)=V(A).

We now turn to the case of supervised learning. In ad-
dition to the patterns {&*}” that are generated by in-
dependent samplings from the a priori distribution (1), a
teacher provides the classifications &, u=1,...,p, for
each of them. We restrict ourselves to the simplest case
of binary classification, =41 or —1. Within the con-
text of a problem with a single symmetry-breaking orien-
tation, we assume that the B vector in the pattern distri-
bution (1) also controls the classification:

£=sgn[f(A=B-§/VN)], )

where f(A) is a general function of its argument. The
aim in supervised learning is to construct a student vector
J that can reproduce the classification rule (7) as well as
possible. To make the connection with unsupervised
learning we assume that f(A) is known to be an odd func-
tion of its argument. Consequently, the classification of a
pattern £ as £, automatically implies that the pattern —§
is classified as —&;. One can thus concentrate on the set
of patterns &£*&f, u=1,...,p, all of which are classified
as +1. The overlap distribution P**(A) of these
‘““aligned” patterns readily follows from the original one
(2) as

P**(M)=[P*(M)+P*(—AN)]O(f(L)) (supervised), (8)
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where the step function ®(x) is 1 for x >0 and O for
x <0. The corresponding potential V**(A) is given (up
to a free additive constant) by —InP**(1)—A2/2, cf. (2).
In particular, we have that V**(A)= o for f(A)<0. The
teacher vector B can now be identified as the symmetry-
breaking orientation for the patterns with positive
classification and the student J with the hypothesis vec-
tor. In this way, we have transformed the supervised prob-
lem into an unsupervised one. For example, in the case of
a teacher perceptron O(f(A))=0(A) with uniformly dis-
tributed patterns V*(A)=0, the equivalent unsupervised
problem is characterized by a uniform distribution of pat-
terns but restricted to the upper hemisphere with B as
north pole, V**(A)=0 for A=0 and V**(A)=w for
A<O.

Finally we turn to the capacity problem. In this case,
the classifications £f of the training patterns are supposed
to be random and one searches for perceptrons with J
vectors that reproduce this classification. Since the con-
dition sgn(§-J/ /V' N )=§, is equivalent to the condition
A:=EE,-J/V'N >0, it is again convenient to absorb the
classification in the patterns with a resulting distribution
P**(A) of the transformed patterns along B

1+m 1—m

P**())= P*(AH-—T—P*(—M (capacity) , (9)
where (1+m)/2, m&€[—1,1], is the probability for a
classification £;==1. The most interesting case of un-
biased classifications corresponds to m =0. The condi-
tion that A >0 for any pattern of the training set can be
incorporated by the following simple choice of the ad hoc
potential in (6):

o for A<O

va)= 0 for A=0.

(10)
So the capacity problem has also been transformed into an
unsupervised problem although one characterized by a
specific ad hoc potential. The extension to other poten-
tials ¥ (A) that have been studied in the literature is obvi-
ous (see, e.g., [7], and further references therein). As a
further generalization one may include a A dependence in
the probability [1£m(A)]/2 for a classification §;==1 to
study the effect of correlations between the patterns and
their classifications [8]. Note that 1xm in (9) then be-
comes 1+m(+A) and thus supervised learning (8) is
recovered as special case m(A)=sgn[f(A)]. So an ap-
propriately chosen m(A) can also be considered to
represent the case of a “noisy teacher” [3].

We end with a technical note concerning symmetric
potentials V*(—A)=V*(A). In this case, one finds that
the right-hand side in Eq. (4) vanishes. Similar problems
arise for a symmetric ¥V (A) in (6). In the following, we
adopt the usual solution to this problem by treating sym-
metric potentials V*(A) or V(A) as limiting cases of ap-
propriate asymmetric approximants.

III. REPLICA CALCULATION

As we shall see, all the cases discussed in the previous
section can be reduced to the study of the partition func-
tion
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— Z © 2
Zz=[dJexp ~/321V(x ) 18(J2—N) (11)
P

with appropriate choices of V(A) and the “inverse tem-
perature” B. The associated free energy F is expected to
be an extensive quantity in N, self-averaging with respect
to the pattern distribution P*(£|B) from (1), and in-
dependent of B:

—BF=InZ=(InZ )* . (12)

The average { )* over the pattern distribution can be
performed using the replica trick [9]. Assuming replica
symmetry one finds by means of a standard calculation
that [10]

—BF=Nex}‘rG(q,R) , (13)
9
_In(1—g) . 1—R?
G(g,R): 5 + 2(1—g)
+afD*thz In [fDTe_BV(”)], (14)
o:=tR+zVq—R*+V1—¢q , (15)

where a:=p /N,
Dz:=dz exp{—z%/2}/V2m,
Dr:=drexp{—1/2}/V 2w,

and D*t:=dtP*(t), cf. Eq. (2). Generically, the extremi-
zation procedure with respect to ¢ and R has a unique
solution ¢ (a) and R (a). These so-called order parame-
ters have the usual meaning: ¢ (a)=J%J%/N is the self-
overlap between two typical vectors J from different re-
plicas (Edward-Anderson parameter [1]) and R (a)
=J-B /N is the overlap between a typical vector J and
the vector B. The word typical refers to those vectors
that give the exponentially dominant contribution to F
for large N and is motivated by the fact that these over-
laps are expected to be self-averaging. By closer inspec-
tion one can see that for finite @ and B8 and under very
weak conditions on V(A) and V*(A) these extremizing
g =q(a)and R =R (a) in (13) satisfy —1 <R (a)<1 and
[R(a)]?<q(a)<1 and thus they can be determined by
studying the zeros of 9G(q,R)/dgq and 9dG(q,R)/0R
without investigating separately G(q,R) at the boun-
daries of the allowed g-R regime. It is only in the zero-
temperature limit B— oo that g (a) may tend to 1, typi-
cally with

x(a):=B[1—¢q(a)] (16)

converging to a value satisfying 0 <x(a)< «. Then the
extremization problem (13) readily simplifies to

_p2
—F =N extr 1—R
x,R X
. (A—s)?
—_ * —_—
afD thzm;n V(A + ox ]},

(17)
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where s:=tR +zV'1—R2 This “streamlined” zero-
temperature version (17) of the extremization problem
(13) is expected to be valid [i.e., x (a) from (16) stays finite
for B— o] if the cost function (6) has a unique (quadra-
tic) absolute minimum. For more details we refer to
[7,11-13].

All of the above results rely on the assumption of repli-
ca symmetry. Following an adaptation of the usual argu-
ments [2,3,14-16], one finds the following condition for
the local stability of the replica symmetric solution (13):

1>a [D*t [ Dz[p(1,2)]*, (18)
fD'rfDT’[l—(T—T')Z/Z]e —B[V(e)+V(a")]
fDTfDT'e_B[V(UH-V(U')] ’

p(t,z):=

(19)

where o’ is defined as o in (15) but with 7’ instead of 7
and the values of ¢ and R entering o and ¢’ are those
that extremize Eq. (14), i.e., g=¢g(a), R =R (a). Within
the validity of the “streamlined zero-temperature formal-
ism” (17), the condition (18) simplifies to

2

IMNo(s =s(a),x(a))
—-1| , (20)

os

1>afD*thz

where A(s,x) denotes the minimizing A in (17) and
s(a):=tR (a)+zV'1—[R(a)]*.

We henceforth will restrict ourselves to situations for
which the replica symmetric solution (13) is valid and we
tacitly will take this for granted if (18) is satisfied.

Next we discuss how our central result (13) relates to
the different learning scenarios introduced in Sec. II. We
first address the various learning rules for unsupervised
learning. In this case, the value of R =R(a) is of basic
interest. To find this value R ;(a) for Gibbs learning, one
has to set V(A)=V*(A) and B=1 in Eq. (14). Indeed,
with this choice, one samples from the a posteriori proba-
bility, as is clear from a comparison of Eq. (11) with Eq.
(3). One can further simplify calculations [3,5] by noting
that the symmetry-breaking orientation B and (the
different replicas of) the hypothesis vector J play an
equivalent role in the free energy (12) and thus one can
focus on ¢ =R €[0,1] in the extremization problem (13)
[17]. Once R;(a) is known, the overlap Rg(a) for Bayes
learning follows immediately from (5). To obtain R, («a)
corresponding to maximum a posteriori probability learn-
ing, one has to set V(A)=V*(A) and B— o in (14).
Indeed, in this way one obviously selects the J vectors
that maximize the a posteriori probability (3). Finally, in
view of (11) the overlap R (a) corresponding to the
minimization of the cost function (6) with an ad hoc po-
tential V' (A) follows from (13) by letting 8— o in (14).

The free energies (13) or (17) as well as the stability
condition (18) or (20) that are obtained in all these vari-
ants of unsupervised learning reduce to those mentioned
in the literature by filling in the specific form of the
nonuniform distribution P*(A) that was used; see, e.g.,
[4] for an example with an ad hoc potential and [5] for
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the application of the Gibbs, Bayes, and maximum a pos-
teriori probability rules to the same model.

We now turn to the other two learning scenarios. As
discussed in the previous section, the capacity problem
for a perceptron can be reduced to that of unsupervised
learning by working with the transformed pattern distri-
bution P**(A) from (9) instead of P*(A) and with the
specific choice (10) for the potential V' (A). Here, a partic-
ularly interesting problem [2,15] is to locate the a value
for which only one J vector remains that reproduces
correctly the classification of all examples. This so-called
critical storage capacity a, can be identified with the a
value for which g (a)—1.

The case of supervised learning is transformed into an
unsupervised problem by choosing P**(A) according to
(8). From there on one can repeat the discussion given
above concerning the various learning rules. It is easily
verified that the corresponding free energy from Eq. (13)
or (17) and the stability condition (18) or (20) reduce for
specific choices of P*(A) and f(A) to the results given in
the literature; see, e.g., [3,6,13,18—20]. Unlike in the
capacity problem, the aim in supervised learning [3] is
not merely the correct memorization of the examples by
the student but also the correct application of the learned
rule to new ““test” examples. The generalization ability of
the student with the hypothesis vector J is usually
quantified through the generalization error e(a), defined
as the probability for disagreement with the teacher on a
new example. This probability can be readily obtained
from the overlap R (a) as follows [3,6,21]:

ela)= [dAPL,(A)

X [ Dz ©[—f(A)f (AR(a)+2zVI=[R(@))],
@1

where P (A) represents a distribution of the test exam-
ples of the same general form (2) as the training patterns
but not necessarily identical.

IV. CAPACITY PROBLEM FOR NONUNIFORMLY
DISTRIBUTED PATTERNS

As a first application of the replica calculation present-
ed in the previous section, we consider the capacity prob-
lem for a perceptron. A set of patterns is generated ac-
cording to an arbitrary a priori probability (1). Each one
receives a random binary classification valued +1 with
probability (1+m)/2, m€[—1,1]. The corresponding
distribution P**(A) follows from Eq. (9) and the poten-
tial V(A) is given in Eq. (10). We ask for the critical
storage capacity a, above which no perceptron can be
found that performs these classifications without error.
This capacity a, can be identified with the a value for
which g(a)—1.

To this end we have to consider the extremization
problem (13) and (14) but with D**t=dt P**(t) instead
of D*t. With (10) the condition 3G (q,R)/3q =0 then
yields
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1—R?
\/q—R2
T, —u%2
X%,
f dre~ 77

—u

where u:=(tR +zV'¢ —R?)/V'1—q. For g approach-
ing 1 from below we have by definition that a—a, and
the integrand in (22) can be simplified by means of
de I’'Hopital’s rule, resulting in

g—R*=a [D**t [ Dz |tR +2z

(22)

1-R?=q, [D**t [ "Dz[R+zV1-R’, (23)

where v:=tR/V'1—R?  Similarly, the condition
3G (q,R)/0R =0 implies for g — 1 that
R=a, [D**t [ 'Dz[tR+zV1—-R?]
X[—t+zR/V'1—R?]. (24)

The trivial solution a,=0 and thus R ==1 can be ex-
cluded by means of the extremization condition (13) and
(14) and we henceforth can assume that a.>0 and
|IR| <1. Subtraction of R times Eq. (23) from 1—R?
times Eq. (24) then yields

0= [D**1[1e ™"V (1—R)/20—1°R [ 'Dz], (25)

where we exploited that [ ~" Dzz=—e —02 o

In the limit of a symmetric pattern distribution or un-
biased classifications (m —0) the distribution P**(A) be-
comes symmetric, cf. (9). Consequently, the first sum-
mand in (25) vanishes and we can infer that
R =R(a,)=0 and with (23) that a,=2. This result is
completely independent of the pattern distribution P*(A)
(provided it is symmetric or m —0). It agrees with the
well known result [2] for uniformly distributed patterns,
and is compatible with Cover’s theorem for patterns in a
“general” configuration [22]. A somewhat similar result
for nonuniformly distributed patterns has also been ob-
tained in Ref. [23]. Using R(a,)=0, one can infer that
the stability condition (18) is identical to that for uni-
formly distributed patterns and is thus marginally
satisfied.

In Appendix B a more general version of this result is
derived, namely,

a.=2 for A=0 (26)
and

a,>2 for A#0, 27
where we introduced

X:= [dAAP**(1) . (28)
It is also demonstrated that

R(a.)=0 if and only if A=0, (29)

which will lead to an interesting connection between the
capacity problem and the phenomenon of retarded
classification, cf. the discussion in Sec. VII. As before,
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the stability condition (18) turns out to be always margin-
ally satisfied.

If in Eq. (9) the pattern distribution P*(X) is asym-
metric and m+-0, then generically A from (28) will be
nonzero and the solution of Eq. (25) will be no longer at
R =0, and hence the a, following from (23) will be larger
than 2 according to (27) and (29). As a simple explicit ex-
ample, we mention P*(A) < ®(A)exp{ —A?/2} and m =1.
The corresponding unsupervised problem (9) and (10) be-
comes identical to the supervised student-teacher per-
ceptron scenario [®(f(A))=O(A) in (7), P*A)
<exp{ —A?/2} in (8), and ¥ (A) as in (10)]. Furthermore,
one readily sees that we are dealing with Gibbs learning
in the equivalent unsupervised problem with the property
g(a)=R(a)<1forall a < o and thus a,= .

The fact that the storage capacity a, is at least equal to
2 can be easily understood as follows. Since B is the only
symmetry-breaking direction, the pattern distribution is
uniform in the subspace orthogonal to B. The capacity
problem in this subspace is of the usual Gardner type
[2,15], and a solution J orthogonal to B exists up to a=2.
Note that this argument also applies in the presence of a
finite number of symmetry-breaking orientations. The ar-
gument breaks down if the patterns are not drawn in-
dependent from each other and a capacity smaller than 2
can result; see, e.g., [8].

We finally mention that the capacity problem with
“biased” patterns £* and classifications £f studied in Ref.
[2] fits into the general framework of this section only in
certain limiting cases and then indeed leads to identical
results.

V. SUPERVISED LEARNING FROM GAUSSIAN
DISTRIBUTED EXAMPLES

In this section the application of the general frame-
work from Secs. II and III is exemplified for supervised
learning: A teacher, which for simplicity is assumed to
coincide with the symmetry-breaking orientation B of the
patterns, provides a classification (7) for each of them.
Our aim is to find a student J that extracts this hidden
rule (7) from the training patterns and as measure of suc-
cess we take the overlaps R(a) with B. We concentrate
on the best possible student following the Bayes learning
rule and consider the case of a teacher perceptron, i.e.,
O(f(A))=0(A) in (7). We further restrict ourselves to
symmetric Gaussian pattern distributions in (1) and (2),

Vr=TA2, (30)
where a is a parameter satisfying —1<a < . The ap-
peal of this distribution is that, while being nonuniform
for a0, the analytic calculations are not more difficult
than those for the uniform @ =0 distribution. Further-
more, the parameter a provides an interesting control pa-
rameter. For a >0 the patterns are more densely distri-
buted around the ‘“‘equator” orthogonal to B, while for
a <0 this zone is less densely populated. Put differently,
a >0 corresponds to a teacher who preferably presents
difficult examples to the student, a =0 represents the
practical man who explains to his fellow whatever hap-
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pens to occur, and the a <O trainer tries to bring out the
“essential point” of his knowledge by means of simple ex-
amples. In Ref. [6] a related problem has been studied,
namely, the case that ¥*(A) vanishes for |A| > K and is
infinity otherwise, where K = 0 is a parameter.

In order to find Rz(a) we will first determine the over-
lap R (a) for Gibbs learning, cf. Eq. (5), which can be
obtained from the extremization problem (13) and (14) by
setting B=1, ¢g=R, and V(A)=V*(A) and replacing D *t
by D**t=P**(t)dt according to (8). By means of
straightforward standard manipulations [3,13] the condi-
tion dG (g =R,R)/dR =0 then yields the following im-
plicit equation for R =R;(a):

21—
1+a—R=a | LU=RL 2 (p v,y |, 6D
_ R 172 U [e*zz/Z]i
YTl G=R(+a) | "(Z)'_(zv)"”wa"

(32)

For unstructured patterns, a =0, the result from Ref. [3]
is recovered. In Fig. 1, we plot Rz(a) for Bayes learning
with different parameters a following from (31) and (5).
Finally, the stability condition (18) can be rewritten in the
form I'(R;(a))>0, where the stability parameter is
defined as

r(R):=1—m
a®(1—R)*+2 [ Dz O(yz)
[a?/(1+a)]R (1—R)+2 [ Dz Uy(yz)’
(33)
U(z):=U,(z){2a(1—R)+[U,(2)—z]*} . (34)

We find that the replica symmetric solution is indeed
stable, cf. Fig. 2.

From (5) and (31) one finds the following asymptotic
expressions:

0.8
= 0.6
N
[+2]
X 04

0.2

0

o o5 1 15 2 25 3
(0

FIG. 1. The overlap Rz(a) following from (5) and (31) for su-
pervised Bayes learning from Gaussian distributed examples (1)
and (30) with different parameter values a between —0.95 and
100. The trainer is a teacher perceptron providing

classifications of the examples according to (7) with
O(f(A)=0(A).
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FIG. 2. The stability parameter I'(R) from (33) for the same
values of the parameter a as in Fig. 1.
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2 _«a +0(a?), (35)

Ryla)= 1753

1 T
aX(1+a) 4] [ Dz Uy(2)]?

Rp(a)=1 +0(a™?) . (36)

For a =0, one recovers the well known results for uni-
formly distributed patterns, while for a0 the results are
in agreement with known bounds and asymptotic results
[24,25]. Furthermore, we find, as in Ref. [6], that an ideal
student learns best on the basis of simple examples (nega-
tive a) as a beginner (a small) but in order to become an
expert for large o a “tough” teacher (large positive a) is
more favorable.

The following two limiting cases are also worth men-
tioning. First, one can see that

Ryz(a)=0O(a) fora——1. (37

Since in this limit the teacher only presents patterns
{£*}P parallel to B, it is obvious that the J vector of a
Hebb student, and a fortiori of an “ideal” student, will
point in the direction of the teacher right away. Second,
one has that

Ry(a)=0(a—1) fora— o . (38)

For a<1 the “ideal” student, and hence any student,
does not learn at all, while for a> 1 perfect learning is
achieved. In this limit all examples £ lie exactly on the
equator perpendicular to the unknown B. Since for p <N
the examples are linearly independent with probability 1,
they define an (N —p)-dimensional hypothesis subspace
of possible B’s. It is not difficult to see that this implies
Ry=0forp<Nand Rz=1forp=N.

VI. COMPLETE SOLUTION
FOR QUADRATIC ad hoc POTENTIALS

In this section we give a complete solution for the
storage, supervised, and unsupervised problems with ar-
bitrary pattern distributions (1) in the case that the learn-
ing strategy is based on the minimization of a cost func-
tion (6) with a quadratic ad hoc potential

V(A)=§A2—dx ) (39)
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The quadratic potential (39) includes several commonly
used learning rules, such as the adaline (¢ >0, see Sec. 2.4
in [7] and Secs. III B and III C in Ref. [13]), the Hebb
rule (¢ =0, see Sec. IIT A in [13]) or Hopfield rule (see
Sec. 4.5 in [7]), and the maximal variance principle
(¢ <0, d =0, see Refs. [4,5]). Similar potentials have been
studied previously for both unsupervised [4,5,26,27] and
supervised [13,20] learning. They may also be of interest
for the capacity problem above a, [7,15,18].

We now turn to the evaluation of the free energy (13).
The logarithm appearing in (14) can be evaluated explicit-
ly, yielding an integrand that is a quadratic form in ¢ and
z. Therefore the integral involving D *t =dt P**)(¢), and
hence the free energy, only depends on the distribution
P*™) through its first two moments:

X:= [dAAP**(1), (40)
A:=1— [dAMA—=XPP**(1), @

where P**):=P*(A) for unsupervised learning and
P**):=p**()) for the supervised and the capacity prob-
lem, cf. (8), (9), and (28). The order parameters g (a) and
R (a) are obtained from the extremization problem (13)
and (14) by using (39)-(41) and letting S— . Several
cases have to be distinguished.

We begin with the case ¢ =0 (Hebb rule) for which one
obtains g (a)=0(a) and

R(a)=V ar?/(1+ak?). (42)

The same result applies for d — o and arbitrary but fixed
c. Note that nothing at all is learned in the symmetric
limit A—0.

For ¢#0 and finite d the minimizing J in the cost func-
tion (6) only depends on the ratio

D:=d/c (43)

and the sign of ¢. For ¢ <0 one obtains again
q(a)=0(a), while R (a) is given by the unique solution
of

- 2 -
ala—724 2D _ 1— AR?*+(D —AR)?
R 1—R? ’
0<XR=<R,, 44
AD_ jpoc 2D <y
R():: A—A A— A

1 otherwise . (45)

For ¢ >0 there exists a positive a. below which g (a) is
smaller than 1. In this regime a < a, one finds that

R(a)=a— D 46)
) 1+a(A?— A4)
q(a)=R(a)—1}%—lT__aTA . 47)

The unique solution of g(a)=1 in the domain 0<a =<1
readily follows from (47) and can be identified with ..
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Above a, we have g(a)=1 as expected and R (a) is
again given by the unique solution of (44). At a=a_ <1,
both g (a) and R (a) are continuous but nondifferentiable
(see Fig. 3).

A more detailed derivation of (42)—(47) will be present-
ed elsewhere. Before proceeding with the discussion of

R(a)
O
\

FIG. 3. The overlaps R (a) for supervised learning of a
teacher perceptron with Gaussian distributed examples (1) and
(30) with different parameter values @ =0 (a), 10 (b), and —0.8
(c). Solid lines from top: the overlap Rjz(a) for Bayes learning
(5) and (31), R, () from (50)—(52) [hardly distinguishable from
Ry(a) in (b)], and the performance (42) of the Hebb rule. Re-
sults R (a) from the minimization of the cost function (6) with
quadratic potentials (39) at different parameter values D =d /c
are plotted as dashed lines. Long dashes from top: D=1.3,0.7,
0.2, 0.02. Note the nondifferentiabilities in these lines [best visi-
ble in (a)]. Short dashes from top: D=—10, —0.5, —0.03.
For both D— o and D— — o the Hebb rule is approached.
R, () is the envelope of all the R(a) curves when the parame-
ter D runs from — o to o but not every such R (a) curve actu-
ally touches R,,(a). The D =0.02 curve in (b) and the
d =—0.03 curve in (¢) announce the occurrence of retarded
classification at D =0, cf. (53).
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these results we mention that the stability condition (18)
turns out to be always fulfilled and that here and in the
following we tacitly restrict ourselves to Ad =0 [the
transformation Ad+>—2Ad merely changes the sign of
R(a)].

For small & one can infer from (46) and (44) that R (a)
starts off proportional to a when ¢ >0 and proportional
to V'a when ¢ <0 but still worse than for the Hebb rule
¢ =0, cf. (42). For large a the overlap R (a) approaches 1
as 1/a except when ¢ <0 and AD <A%— 4, in which case
a convergence slower than 1/a towards the asymptotic
value R, =1 is observed.

For symmetric distributions P**)(1), i.e., A—0, as
well as for symmetric potentials d —0 (with ¢#0) we find
from (44) and (46) that

172
R(a)=0(c[4 —X])@la—ag) |———220 | |
a—(4—x%"!
48)
ay:=(14+D?) /(4 —X?)?. (49)

This phenomenon that R(a) remains zero below a
threshold ay> 0 is called “retarded classification” in [5]
and will be discussed in more detail in Sec. VII. In par-
ticular, Eq. (48) implies that for c[ 4 —A 2] <0 nothing at
all can be learned if either A—0 or d —O0.

One may ask for the optimal choice of the parameters ¢
and d in (39) for given values of «, A, and A, and the cor-

responding largest value of R(a). This optimal
R =R, (a) is obtained as the unique solution of
2p2 2
o R+ AR R g<p<t, (50)
1— AR 1—R
and the corresponding optimal parameters ¢=c,,(a)
and d =d(a) satisfy
Coptl®) 4
—P— =L R (). (51)

dope(@) X

To illustrate further the above results, we finally turn
to the Gaussian pattern distributions introduced in the
previous section in the context of supervised learning
from a teacher perceptron (see also Fig. 3). In this case
one obtains from (40) and (41) that
172

2 , A=1

7(1+a)

_1=2/7

+a (52)

Thus A is decreasing with a €[ — 1, ] from « to O,
while A increases from — o to 1. For small a a compar-
ison of (35) with (42) and (52) shows that the Hebb rule
saturates the Bayes limit. On the other hand, the large-a
behavior of R(a) is always significantly worse than for
the Bayes rule (36) and R(a) even stays below 1 for
a—o© when D<—ma/V'2(1+a). The Ilatter
phenomenon has also been observed in [4]. For a sym-
metric potential d —0 Eq. (48) takes the form

172

a—Qq
9 . (53)

R (a)=0(ac)®(a—ay) a—(i+1/a)
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where a0=(1+1/a)2. In particular, maximal variance
learning (¢ <0) performs quite well for a <0 and large a,
saturates even the Bayes limit (38) for a— —1 and arbi-
trary a, but fails completely for a 20 and for a <0 when
a=<a, (see also [4,13]). Note that for a— —1 the Bayes
limit (37) can also be saturated but now by a potential
with ¢ <0 and d =0. Some of these results for the partic-
ular case of uniformly distributed patterns a =0 have
been obtained recently also in Ref. [13].

Finally, we turn to the optimal choice of the parame-
ters of the ad hoc potential, as given by (51). The over-
laps R (a) from (44) and (46), Rz(a) from (31) and (5),
and R, (a) from (50) are shown in Fig. 3. As expected
from the discussion below Eq. (52), the Bayes limit Rz(a)
is reached by R, (a) for asymptotically small a with
Copt(@)—0, whereas for large a one obtains a conver-
gence towards 1 like 1/a which is worse than for the
Bayes rule (36). For intermediate a values the differences
with the Bayes rule become remarkably small both for
a =10 [Fig. 3(b)] and a = —0.18 [Fig. 3(c)].

VII. PERSPECTIVES

In the present paper we introduced a common frame-
work for unsupervised learning, supervised learning, and
the capacity problem within the context of nonuniform
pattern distributions with a single symmetry-breaking
orientation. In a companion publication, further applica-
tions of this formalism will be presented, including a gen-
eral study of Gibbs and Bayes learning. We will show
there that the overlap Rz(a) for Bayes learning vanishes
for a values below a certain threshold a,> 0 if and only if
the first moment A of the relevant pattern distribution [cf.
(40)] is zero. The fact that nothing about the pattern
structure can be inferred below a nonzero threshold «
has been observed previously in various special cases (see
[4,5,27-29] and Sec. VI) and has been termed “retarded
classification” in Ref. [5]. Note that for learning rules
other than Bayes the threshold o, may be larger than for
Bayes learning [4] and retarded classification may occur
even when A0. For instance, we have seen in Sec. VI
that a quadratic ad hoc potential V(A)=cA?/2 leads to
retardation for any pattern distribution (1) and it can be
proven that the same is true for arbitrary symmetric po-
tentials V(—A)=V(A).

A special case of retarded classification follows from
our investigation of the capacity problem in Sec. IV. In
this case, we found that R(a)=0 at a=«a,, where g(a)
becomes 1 for the first time, if and only if A=0; see Eq.
(29). Even though we were not able to prove this
rigorously, we expect that R (a) vanishes not only at
a=aqa, but for all a =a,. In other words, we have

a.Za, (54)

for such a pattern distribution when the ad hoc potential
(10) is used. The same relation (54) follows from the re-
sults of Sec. VI for arbitrary pattern distributions and
quadratic ad hoc potentials (39) when retarded
classification is present, i.e., A=0 or ¥ (—A)=V(A). Fi-
nally, retarded classification with a, =ay,=1 was also ob-
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served for the Ising reversed wedge perceptron for a
specific width of the wedge corresponding precisely to the
condition A=0 [30]. We therefore conjecture that (54) is
valid under rather general conditions within the context
of ad hoc potentials leading to retarded classification.
[Note that for Gibbs learning (54) is generally violated
since g (a)=R(a).] This implies a surprising connection
between our result (26)—(29) for the capacity problem and
the phenomenon of retarded classification in the corre-
sponding unsupervised problem. Moreover, one expects
that for more general potentials [2,15] V(A)=@(A—«k)
than in (10) one will obtain similar “universal” «, values
which only depend on the “stability parameter” x>0
when A=0.

Throughout our investigation we tacitly assumed that
the distribution of the patterns (1) was exactly known ex-
cept for the symmetry-breaking orientation B itself.
From the results obtained in Sec. VI we can conclude
that this knowledge is indeed practically indispensable in
order to design a learning strategy that provides a reason-
ably good hypothesis J for the unknown B. However, in
particular in the context of unsupervised learning, one
would like to include cases with little or no a priori
knowledge about the pattern distribution. In a subse-
quent work we will show how the case of a pattern distri-
bution (1) for which both B and V*(A) are unknown can
be reduced to the one studied in the present paper. In
other words, we will describe a method that allows the
exact determination of ¥*(A) from the presented patterns
provided it is known that they are axially symmetric
about a single (unknown) direction B. The only and obvi-
ously unavoidable exceptions are pattern distributions
with A=0 below the retardation threshold «, belonging
to Bayes learning.
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APPENDIX A

Following Ref. [5] we define the quality of a hypothesis
J as

Q(J):= [dB'P(B'|{£"}")h(J-B'/N) , (A1)
where h(x) is strictly monotonically increasing for
—1=x =1 but otherwise arbitrary. As proven in [5], for
any set of patterns {£”}” the Bayes hypothesis Jp from (4)
maximizes the quality (A1), independently of the specific
choice of h(x), and the overlaps Rz(a)=Jz-B /N and
Rs(a)=Jg-B/N of the Bayes and Gibbs hypotheses
with the true (unknown) B satisfy (5). These results are
valid in the limit N — « with a:=p /N =0 fixed. More-
over, the pattern distribution (1) must be such that the
self-overlaps g (a)=J%J%/N of two hypotheses drawn
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independently from (3) are distributed with a very sharp
peak. This condition is equivalent to the assumption of
replica symmetry in the Gibbs learning scenario. Taking
into account that g (a)=Rg(a) in this scenario, one ex-
pects [31] that replica symmetry is actually never broken.
The latter can even be proven rigorously for asymptoti-
cally small and large a and arbitrary pattern distributions
(1), as we will show elsewhere. Moreover, it was found
true for arbitrary a in all special cases so far studied.

Next we restrict ourselves to learning algorithms for
which the overlap R (a)=J-B /N is self-averaging (i.e., §
distributed) in the limit N — o. Note that this assump-
tion is rather weak and, in particular, does not require re-
plica symmetry to hold. We want to prove that J; makes
the smallest angle with B among all the hypotheses J fol-
lowing from these learning algorithms. To this end it is
sufficient to demonstrate that Q(Jz)—Q(J)=0 implies
Ryz(a)—R(a)=0. By multiplying Q(Jz)—Q(J)=0 by
I15=18( (€#)*—N), integrating over all £*, and compar-
ing (1) with (3) one finds from (A1) that

[aB'8(B*—N) [ [p[ dE*P({£")?|B")[Jz—J]-B'/N
p=1

20, (A2

where we made the particular choice 4 (x)=x in (A1l).
Though J; and J depend on {&*}? and the learning algo-
rithm used, they are independent of the integration vari-
able B' in (A2) and we thus can interpret any fixed B’ in
the integral f [15-,48" -+ as the real (unknown)
symmetry-breaking orientation B. Using the self-
averaging assumption for the overlaps, the integral
JTI5-,d&" - - - becomes Rp(a)—R(a) independently of
B’ and thus Rgz(a)Z R (a).

APPENDIX B

Equation (25) can be rewritten in the form ¥(r)=0,
where r:=R /V'1—R? and

= * % —x2s2 Voar—xt2 [©
$x:=[D t[te /Vam—xi? [ "Dz (B1)

One readily sees that ¢(0)=A/V2m [cf. (28)] and
P'(x) <x for all x. It follows that the solution of (25) is
unique. Moreover, we can conclude that r=0 if A=0,
r>0if A>0, and r <0 if X <0. Using (25), a partial in-
tegration of  (23) yields a.d(r)=1, where
¢(x):= [D**t [ 2 Dz. Next we observe that $(0)=1 and

(x)=—(x)—x [D**tt* [ "D
¢'(x)=—p(x)—x [ [ D
and consequently

L o2 [
7~ Jax [eo+x [ D**u? [ "Dz

(B2)

1
aC
For A=0 we have seen that » =0 and thus a,=2. For
A>0 we found that >0 and that ¥(x) decreases from

X/V2w to 0 when x increases from O to r. Consequently,
we obtain a, > 2 for A >0 and similarly for A <O.
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